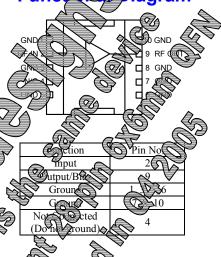
wj

Product Features

- 50 2200 MHz
- +30 dBm P1dB
- +47 dBm Output IP3
- 17 dB Gain @ 900 MHz
- MTTF > 100 Years
- Single Positive Supply
- Internally Matched
- 24dBm IS-95 Channel Power
 @ -45dBc ACPR


Product Description

The AH201 is a 1-Watt driver amplifier that offers excellent dynamic range in a low-cost, 6 x 6 mm 10-pin QFN surface-mount package. Biased at +11 V, this device provided its optimum P1dB and OIP3 performance; it can be biased as low as +9 V for lower power applications.

The backside metalization provides excellent the dissipation while allowing visible evidence of sereflow across the bottom of the package on a SMT bottom of the package on a SMT bottom of the package on a SMT bottom over 100 years at a mounting temperature of +80 All devices are 100% RF & DC tested.

The product is targeted for use as a driving wireless infrastructure or CATV application and medium power is required.

Functio Diagran

Specifications (1)

Typical Proformace (4)

Parameters	Units	Min	Тур	AX(-arar zers	E	Vnits	W	Typical	
Operational Bandwidth	MHz	50		2 1	Freq	0	мн	900	1900	2140
Test Frequency	MHz		900	_ ~	Ga		dB♥	17	15	15
Gain	dB		17		Return			20	9.1	9.2
Input Return Loss	dB		20_	$\langle \mathcal{O} \rangle$	put Revu	ss	dB	18	12.6	15
Output Return Loss	dB				utput P	24	dBm	+30	+29.7	+29.4
Output P1dB	dBm	+29 €			Outp		dBm	+47	+46	+45
Output IP3 (2)	dBm	+45 (Noiseigure		dB	2.5	3.8	4.2
Noise Figure	dB				IS hannel R	2 r ⁽³⁾	dBm	+24	+24	
IS-95 Channel Power (3) @ -45dBc ACPR	dBm	40	2 4		ply Bias	∌		+11	V @ 350	mA
Operating Current Range	mA	\bigcirc	₹350.	3 98	Data reflects armano	e of a typical	AH201 in an ann	lication circuit	including acco	ciated circuit

1. Test conditions unless otherwise noted: 25°C,

Supply Voltage

- 3OIP measured with two tones at an output suppression on the largest IM3 product is used to the largest IM3
- IS-95, 9 Channels Forward, Pk/Avg Ratk kHz bandwidth, Channel BW = 1.23 M

MBm/tone see the d by 10 MHz.

ne 3OIP 12:1 rule. a .001% 1ty, ±885 kH2 07, 3 board and the component losses.

te & imu Rating

Temper Storage Temperature DC Voltage

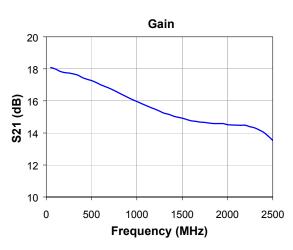
RF Input Power Stinuous)
Maximum Just Temperature

Operation of th

0 to +85 °C -55 to +125 °C

+13 V +16 dBm +220° C

above any of these parameters may cause permanent damage.


Ordering Information

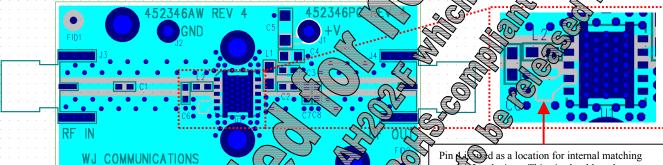
Part No.	Description
AH201	Med. Power High Linearity Amp.

Specifications and information are subject to change without notice

Notes

- Measurements are shown for an unmatched packaged device with the data be de-extracted to the december leads.
- The amplifier requires a matching network at the input for proper of tion. The amplifier is intrivially well—the dat the output and ideally should "look" into 50Ω . Any deviation from this can affine arity P3 performance the deviation from the deviation f

	S-Para	ameters $(V_{DS} = +)$	$10V, I_{DS} = 3$, was ched dev	vice 50 Ω sy	yst W	
Freq (MHz)	S11 (dB)	S11 (ang)	S214dB)	(ang)	S∭ (dB)	$\overline{\$}\overline{\$}\overline{2}$ (ang)	22 (dB)	S22 (ang)
200	-18.13	-141.77	17.	136.16	21.60	-12.80	-15.22	158.80
400	-14.01	-151.43	17	134.85	-22.0	-27.6	-15.91	138.77
600	-11.32	-161.69	17	112.86	-22	-40/-5	-19.50	119.22
800	-9.60	-175.43	(Q / A	93.	30		-28.09	86.76
1000	-8.38	170.85	1 (0)	€\$\1 ^P	() 2.75	-66.32	-28.42	-67.31
1200	-7.72	156.06	50	.43	¥4.58	0.56	-18.92	-96.94
1400	-7.51	140.70	V 7:09 [37.11	25.23	94.35	-14.49	-115.52
1600	-7.69	123	14.78	18.4	-25.58	⇒ -107.34	-11.68	-131.45
1800	-8.42	105 0	▼ 1463	-0.8	-26.	-124.66	-9.76	-146.54
2000	-9.90		4.53	-2	-20	-144.30	-7.87	-160.86
2200	-12.60		(0)	9.58	1200	-170.04	-7.03	-176.78
2400	-11.30	1 233	93)07	2 4.59	5.82	158.59	-7.07	169.02
2600	-6.47	117.35	(1 2.82	105.64	25.42	125.63	-7.82	159.81
2800	-3.46	4 9.16 90	10.54	-135.75	-25.19	97.73	-8.39	158.80
3000	-2	178 32	7 60 _− *€	€ -16×274	> -25 67	70.96	-7.81	158 95


	£ 12.2	ameters +	$11 \times I_{DS}$ 350) m. € ₹25°C,	unmatched de	vice in a 50 Ω sy	ystem)	
Freq (M	Hz)	S11 (**ng)	221 (dB)	(Sang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
200	-) 23	26 0.99	₽ \$9.78 (6.01	-21.55	-12.99	-15.65	157.55
400	3.98	150.55	17.45	134.66	-21.89	-26.89	-16.32	136.16
600	-11.28	-161.20	17.84	113.54	-22.42	-40.61	-20.06	113.27
	-9.5	-174	16.5	93.30	-22.97	-54.78	-28.14	66.80
	-3.6	17	1697 ₹	73.75	-23.63	-68.09	-25.96	-57.60
	7.72			54.97	-24.49	-80.75	-18.30	-91.67
100	52	(20).70	5.06	36.62	-25.19	-92.07	-14.20	-111.26
1000	7.63	23.63	$\Rightarrow_{14.76}$	17.90	-25.65	-110.24	-11.62	-128.20
1800	-8.33	101.89	14.61	-1.59	-26.17	-126.52	-9.75	-144.01
2000	-9.90	76.6	14.52	-22.62	-26.54	-146.07	-7.92	-158.95
22	-1269	270	14.47	-46.91	-26.12	-171.34	-7.13	-174.81
2400		A 90 34	14.03	-75.60	-25.97	158.68	-7.18	170.91
	4 79	0.68	12.76	-106.82	-25.45	124.53	-7.89	162.45
2 800	3.44	49.63	10.46	-136.86	-25.52	96.19	-8.36	161.68
3000	-2.05	-178 91	7.50	-162.88	-25.80	71 90	-7 77	161.32

S-parameters are available for download off of the website at: http://www.wj.com

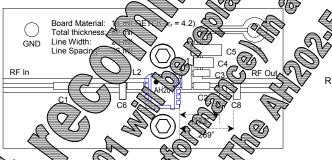
Application Circuit PC Board Layout and Schemati for 900 MHz, 1900 MHz, and 2140 MHz Reference De

	Ty	pical Perf	ormance)		_<
ı	Parameters	Units		Typical		ı,
	Frequency	MHz	900	1900	2140	
	Gain	dB	17	15	15	
	Input Return Loss	dB	20	9.1	~9. ((Ζ,
	Output Return Loss	dB	18	15	$\geq s_{\ell}$	Ì
	Output P1dB	dBm	+30.0	+29.7	\bigcirc	\geqslant
	Output IP3	dBm	+47	+46) -
	Noise Figure	dB	2.5	3-8	4.2	4
	IS-95 Channel Power ³ @ -45dBc ACPR	dBm	+24	AL	+24	`₩
	Supply Bias		+1/	330	mA	$\langle \hat{z} \rangle$

Circuit Board Material: .014" Getek

.062" total thickness, 1 oz copper Microstrip line details: width The stub on pin 4 is added for a

800-951-4401


with ond wires. This pin should not be unded for proper operation. s .010". Pad is .044" x .057"

ce at the edge of the pad is .038 wide and tapers to .023 wide to match width of pin 4.

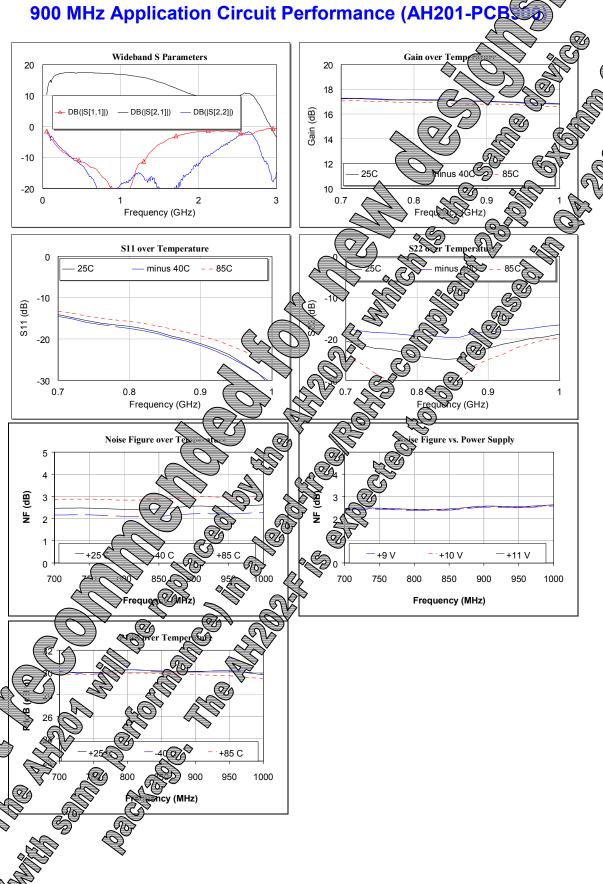
 $V_S = +11 \text{ V}$ $I_D = 350 \text{ mA}$

1000 pF 0805

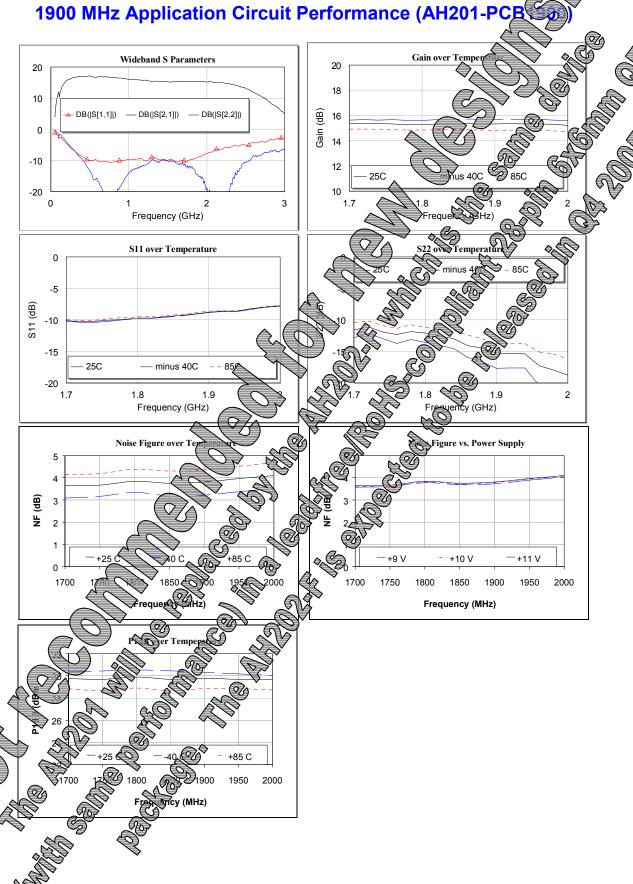
.01 μF 1206

СЗ C2 L2 RF OUT AH201 -0

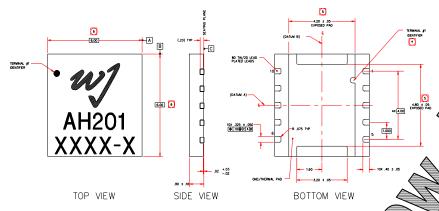
- Thd planes around it are operation the
- pear sinking equired for portions. Further mounting dare show the "Mount configuration".

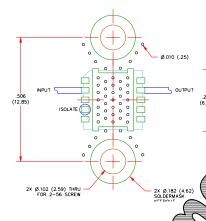

 Solve should a wirew the ceramic type to insure sufficient sinking
- ity. TOK9 LQ1608 series is recommended.
- a stub as n above.

Com	ponent	val	lues


Frequency	900 MHz	1900 MHz	2140 MHz
C1, C2, C3	100 pF	56 pF	56 pF
C6	2.2 pF	0.5 pF	no load
C7	no load	no load	1.1 pF
C8	no load	1.0	no load
L1	33 nH	22 nH	18 nH
L2	3.3 nH	0 Ω	0 Ω

Specifications and information are subject to change without notice




2140 MHz Application Circuit Performance (AH201-PCB) Wideband S Parameters Gain over Tempe 20 20 18 10 --- DB(|S[2,1]|) DB(|S[2,2]|) Gain (dB) 16 0 14 -10 12 25C -20 10 Frequency (GHz) S11 over Temperature 0 S11 (dB) -20 25C minus 40C -30 2.1 2.3 Frequency (GHz) 6 5 NF (dB) 3 +10 V -+11 V 2000 2000 2050 2250 2300 2150 Frequency (MHz) 2250 2300

Outline Drawing

Land Pattern

Thermal Specifical

Parameter

Operating Case Temperat Thermal Resistance, R Junction Temperature

Notes:

- 1. The thermal resid to-case at a
- 2. This corres

Produc

The componer "AH201 alphan the pack

veen 500 and 1000V d Device Model (CDM) Standard JESD22-C101

evel 1 at +235° C convection reflow tandar JEDEC Standard J-STD-020A

Sounting Config. Notes

- considerations.
 Two 2-56 screws with washers should be used for thermal grounding to the main chassis.
- Ground plane on the backside should extend past the holes for the 2-56 screws as a minimum.
- No soldermask should be applied to the backside of the board local to the part to ensure contact between the backside metalization and chassis.
- Via holes and holes for the 2-56 screws should be plated through. Trace width depends on the PC board.
- A minimum of 1 oz. / 1 oz. Copper should be used. Pin 4 should not be connected for proper operation.

Functional Pin Layout

Pin	FUNCTION			
1	GND			
2 RF Input				
3 GND				
4	No Connect			
4	(Do not ground)			
5	GND			
6	GND			
7	GND			
8	GND			
9	RF Output / Bias			
10	GND			

Specifications and information are subject to change without notice